Fibonacci Series
In mathematical terms, the sequence Fn of Fibonacci numbers
is defined by the recurrence relation.
Fn = Fn-1 + Fn-2
with seed values :
F0 = 0 and F1 = 1.
***The Fibonacci numbers are the numbers in
the following integer sequence:
-->0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,....
Python program(using recursive function):
def nth_fibonacci(n):
if n<0:
return "Invalid"
if n==0:
return 0
elif n==1:
return 1
else:
return nth_fibonacci(n-1)+nth_fibonacci(n-2)
print(nth_fibonacci(9))
Another approach(Using formula) :
In this method we directly implement the
formula for nth term in the fibonacci series.
Fn = {[(√5 + 1)/2] ^ n} / √5
import math
def fibo(n):
phi = (1 + math.sqrt(5)) / 2
return round(pow(phi, n) / math.sqrt(5))
# Driver code
if __name__ == '__main__':
n = 9
print(fibo(n))
Comments
Post a Comment